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As low-thrust space missions grow in prevalence, it is becoming increasingly important to design low-thrust

trajectories with robustness against unforeseen thruster outages or missed thrust events. Accounting for such

anomalies is particularly important in chaotic multibody systems, such as the cislunar realm, where pertinent

dynamical structures constrain the dynamical flow. Yet it remains unclear how these dynamical structures influence

robust trajectory design. This paper provides the first comprehensive statistical comparison between nonrobust and

robust trajectories in relation to the invariant manifolds of resonant orbits in a circular restricted three-body

problem. For both the nonrobust and robust solution categories, the optimal subset exhibits stronger alignment with

the invariant manifolds, whereas the broader feasible set can sometimes deviate significantly. On average, the

robust optimal trajectories shadow the invariant manifolds as closely as the nonrobust optimal trajectories and, in

some instances, exhibit even stronger alignment than their nonrobust counterparts. By maintaining proximity to

these invariant manifolds, the robust low-thrust solutions are able to efficiently leverage the global dynamical flow

to achieve optimality even under operational uncertainties.

Nomenclature

c = nonlinear programming constraints

d̂SA = distance along the invariant manifold from the sep-
aratrix to its nearest point from any trajectory point

�dSA�W� = distance along the invariant manifold from the
separatrix to its nearest point on W from xP ∈
fP�x�;P−1�x�g

d̂ST = shortest orthogonal distance to any invariant mani-
fold from any trajectory puncture point

�dST�W� = shortest orthogonal distance to the invariant mani-
fold W from xP ∈ fP�x�;P−1�x�g

F = σ-algebra of measurable events
�F t�t≥0 = filtration representing information over time
f = uncontrolled state vector field
g = controlled state vector field
I = inequality index set
J = objective function
L = running cost
N = number of segments
P = probability measure
P�x� = forward-integrated trajectory puncture point to S
P−1�x� = backward-integrated trajectory puncture point to S
S = Poincaré surface of section
Tf = final coast time
Ti = initial coast time
Ts = shooting time
tf = final time
t0 = initial time
u = spacecraft control
W5∶6

S
= stable invariant manifold of the 5:6 resonant orbit

W3∶4
S = stable invariant manifold of the 3:4 resonant orbit

W3∶4
U = unstable invariant manifold of the 3:4 resonant orbit

W5∶6
U = unstable invariant manifold of the 5:6 resonant orbit

xP = trajectory puncture point on S
Δτ = duration of the missed thrust event
ϕ = terminal cost
ξ = spacecraft state
E = equality index set
τ = time where a missed thrust event begins
γ = periodic orbit
Ω = random sample space
ω = random sample

Superscripts

† = reference solution
ω = realization solution

Subscripts

nr = nonrobust solution
r = robust solution
i; j; k = indices

I. Introduction

L OW-THRUST (LT) propulsion systems are becoming increas-
ingly popular in space missions, both large strategic science

missions (e.g., Hayabusa, Dawn, Hayabusa2, Bepi-Colombo, Lucy,
Psyche) and small technology demonstration missions (e.g., Mars
Cube One, NEA Scout, Lunar Flashlight), due to their character-
istically high specific impulses, which allow a higher effective
payload fraction than their impulsive counterparts. However, these
LT missions are susceptible to safe mode events, which occur if an
anomalous event (e.g., impact with space debris) forces the space-
craft to depart from its nominal operating conditions and enter a
protective mode during which all thruster operations are switched
off—if such a safe mode event coincides with a scheduled thrust arc,
it results in what is known as a missed thrust event (MTE). Due to
their characteristically long thrust arcs, MTEs are quite common for
LT missions [1]. And, unless specifically accounted for during the
preliminary mission design phase, MTEs can severely impact the
spacecraft’s performance and, in some cases, may even result in
complete failure depending on the remaining mission time and the
available onboard fuel. This can be especially dire in missions
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where success depends on certain maneuvers being performed at
critical junctures along the trajectory (e.g., flybys).
While robust trajectory design (i.e., the process of designing LT

trajectories robust to MTEs, or more concisely, robust trajectories
from here on) has garnered interest from both industry and academia
in the last decade, there exists a research gap in understanding the
global geometric properties of the robust solutions in relation to
the dynamical structures in multibody systems. Existing literature in
the broader area of robust trajectory design can be predominantly
categorized into two schools of thought—“missed thrust design”
and “missed thrust analysis.” The missed thrust design problem
focuses on solving an optimization problem that directly incorpo-
rates robustness as a performance metric, whereas the missed thrust
analysis problem focuses on evaluating the sensitivity of a nominal
trajectory to MTEs.
Practical approaches to robust trajectory design are more similar

to the latter. They typically involve redesigning a nominal trajectory
under various missed thrust scenarios, perhaps with lower duty
cycles or with forced coast arcs in carefully chosen points along
the trajectory. Depending on the subsequent change in key perfor-
mance metrics, e.g., propellant usage and/or time of flight, empirical
margin allocations are then made in the nominal mission profile.
Such an approach was taken with the Dawn mission to ensure that a
minimum shutdown time of 28 days could be endured at all points
along the nominal trajectory without significantly compromising
mission objectives [2,3]. An almost identical analysis was con-
ducted recently for the Psyche mission [4]. Analogous techniques
also appear in various studies within existing literature in this area.
For example, Laipert and Longuski investigated the changes in the
propellant usage and/or time of flight when a nominal trajectory is
reoptimized following a single MTE [5]. Building on this work,
Laipert and Imken later utilized the same metrics to evaluate how
multiple MTEs affect a nominal trajectory, using a Monte Carlo
approach with historical missed thrust data from past missions [6].
However, due to the decoupling between the trajectory optimiza-
tion and the uncertainty quantification inherent to this approach,
this strategy inadvertently risks shifting the sensitivity to a differ-
ent location along the redesigned trajectory and producing solu-
tions that are glaringly suboptimal with respect to the nominal
trajectory.
Significant progress has been made in addressing the missed

thrust design problem through both deterministic and stochastic
approaches. Olympio approached this problem by formulating it
as a two-level stochastic optimal control problem [7], while the
expected thrust function, assuming a known distribution for MTEs,
has been used by Rubinsztejn et al. [8]. More general stochastic
frameworks, such as stochastic differential dynamic programming
[9] and belief optimal control [10], have also been shown to be
effective in robust trajectory design. However, as these stochastic
approaches typically model the MTEs as Gaussian disturbances,
they do not accurately capture their true stochastic nature. More
recent approaches explore data-driven methods in an attempt to
learn the mapping between the state of the spacecraft after an
MTE has occurred and the optimal control sequence going forward
using neural networks [11,12] and reinforcement learning [13,14].
These methods, however, only solve a local problem (i.e., small
perturbations from the nominal) and are often limited in their ability
to generalize to more complex gravitational environments where the
LT trajectories are more sensitive to perturbations.
Other strategies in the literature address the missed thrust design

problem by formulating optimization problems with constraints on
the missed thrust recovery margin (i.e., the maximum amount of
time a spacecraft may be allowed to coast while still being able to
reach the terminal manifold once thruster operations are resumed)
[15]. State-of-the-art approaches extend this concept by lifting the
original optimal control problem to a higher dimensional space to
solve for a reference trajectory (the path we plan to fly) simulta-
neously with multiple realization trajectories (the path we may
switch to should an MTE occur) from a priori chosen points
along the reference trajectory [16,17]. Since the reference and the
realization trajectories are solved simultaneously as a single large

optimization problem, it can quickly run into computational trac-
tability issues as the number of realizations increases. McCarty et al.
[16] therefore choose to restrict the study to a small number of
realizations, whereas Venigalla et al. [17] suggest an adaptive
algorithm to regulate the number of realizations such that the
minimum missed thrust recovery margin across all realizations
remains above a threshold. In both studies, however, the authors
note that applying the method to multibody gravitational models
may be more challenging due to the inherently chaotic nature of the
underlying dynamics. To the best of our knowledge, the study by
McCarty et al. is the only instance where the missed thrust design
problem has been studied in the context of multibody gravitational
environments. However, because they solve for a single-point sol-
ution, it fails to elucidate the true topological properties of the robust
solution space in complex dynamical environments.
Another approach to incorporate robustness is to leverage knowl-

edge of the natural dynamical flow within the optimization frame-
work. Alizadeh and Villac adopted this approach by modifying the
objective function in the optimal control problem to penalize devia-
tions from the natural dynamical flow [18]. However, this penalty
term applies to the deviation integral over the entire mission dura-
tion, which may inadvertently allow for trajectories that do not align
with the natural dynamical flow at all times. With the exception of
Alizadeh and Villac, current methods for designing robust trajecto-
ries generally do not approach the problem from a dynamical
systems perspective. Even in their work, while the trajectories are
encouraged to stay close to the natural dynamical flow, the precise
relationship between the flow and the resulting trajectories remains
unexplored, leaving a gap in fully understanding this connection.
In a series of recent studies by Cox et al., the evolution of

dynamical structures in the circular restricted three-body problem
(CR3BP) was examined when augmented with LT propulsion
(CR3BP� LT), with applications to designing transit and capture
trajectories near secondary bodies [19–21]. The authors utilize
control curves to establish initial feasibility bounds on the solution
space, which are then refined by incorporating geometric constraints
derived from invariant manifolds, providing a more targeted explo-
ration of feasible solutions compared to traditional energy-based
methods. Their findings highlight the critical importance of using
the manifold geometry in narrowing the solution space and creating
a framework for exploring control parameter configurations in LT
trajectory design within multibody dynamical systems. A key limi-
tation of the CR3BP� LTmodel lies in its assumption of a constant
thrust profile throughout the analysis. While this assumption is
particularly useful for studying ballistic transfers, or low-energy
and LT solutions with minimal forcing, it falls short of capturing
the full complexity of general LT trajectory design. In optimal
control problems, both the thrust direction and magnitude typically
vary significantly over time, creating a continuously evolving
dynamical landscape, which introduces additional complexity to
the analysis. The challenge becomes even more pronounced in the
context of robust trajectory design, which typically exhibits a higher
dimensional solution space. While the CR3BP� LT model seems
to provide valuable insights, the inherent assumptions may limit its
applicability for analyzing robust LT solutions.
This study explores the relationship between robust LT solutions

and the underlying dynamical structures (DS) in multibody gravi-
tational environments, with the ultimate goal of improving the
robust trajectory design process by leveraging a deeper understand-
ing of the geometric and topological properties of the solution space.
To accomplish this, we begin by situating the missed thrust design
problem within the broader framework of robust control, encom-
passing a wider range of uncertainties, randomness, and stochastic-
ity. Next, we solve for a collection of nonrobust and robust solutions
for a specific low-thrust transfer problem. Finally, leveraging
tools from dynamical systems theory, we statistically analyze the
differences between these two sets of solutions in relation to the
invariant structures within the model. In this study, we specifically
focus on a minimum fuel transfer between a 3:4 resonant orbit and a
5:6 resonant orbit in the Jupiter–Europa system, a problem that was
originally investigated by Anderson and Lo [22] to understand the
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role of invariant manifolds in nonrobust LT trajectory design. Their
results imply that the nonrobust optimal LT trajectories naturally
align with the relevant invariant structures in the system. To dem-
onstrate this, they compare an optimal LT trajectory with the invari-
ant manifolds of unstable resonant orbits in the Jupiter–Europa
system through a qualitative visualization on a Poincaré surface of
sections, where the intersections made by the optimal trajectory
closely shadow those of the invariant manifolds, highlighting the
manifolds’ role in LT trajectory design. Notably, their optimization
algorithm, despite lacking explicit information about invariant
manifolds, produced an optimal trajectory that appeared to leverage
these manifolds as natural transitory pathways. While we follow a
similar approach as Anderson and Lo, we extend their work in three
key aspects. First, to rigorously analyze the relationship between
trajectories and DS, we introduce distance metrics on a Poincaré
surface of section, which allows for a quantitative comparison of
robust and nonrobust solutions, moving beyond previous qualitative
assessments. Second, we perform a detailed statistical comparison
between robust and nonrobust solutions, examining how their
dependence on invariant manifolds evolves under varying parame-
ters, such as the initiation and duration of the MTEs. By considering
a family of solutions rather than focusing on a single point solution,
we elucidate global geometric and topological properties of the
solution space in relation to the underlying DS. Finally, we differ-
entiate between feasible and optimal solutions for both robust and
nonrobust cases, providing key insights into how the relationship
with the invariant manifolds evolves depending on whether the
solutions are merely feasible or achieve optimality, highlighting
significant differences in how each class of solutions leverages
the DS.
The paper is organized as follows: In Sec. II, we present the

general robust optimal control problem, which, under certain
assumptions, simplifies into the missed thrust design problem we
study in this paper. In Sec. III, we state the circular restricted three-
body model with a brief discussion to follow on the relevant DS it
exhibits, and in Sec. IV, we describe pertinent tools from dynamical
systems theory along with the metrics we use to characterize the
trajectory solutions with respect to the invariant manifolds. In Sec. V,
we first present a qualitative comparison between an example robust
solution and an example nonrobust solution and then present a
statistical comparison between solution families in each category
to uncover differences in their global properties. Finally, we high-
light the importance of this work and summarize key insights from
this study in Sec. VI.

II. Robust Optimal Control Problem Formulation

We begin this section by formulating an optimal control prob-
lem that accounts for uncertainty in terminal boundary conditions
and flight path constraints, randomness in system parameters, and
stochastic effects. We start from generality so that the reader has a
wider context of the missed thrust design problem considered in
this paper and so that future efforts have guidance on where to start
additional extensions of the work considered in this paper with
respect to additional sources of uncertainty, randomness, and
stochasticity. After stating the general problem definition in
Sec. II.A, we narrow our focus to the infinite-dimensional missed
thrust design problem in Sec. II.B, and then, a finite-dimensional
restriction of the missed thrust design formulation is made in
Sec. II.C, which allows us to perform the numerical analysis of
this paper.

A. General Robust Formulation

Let �Ω;F ; �F t�t≥0;P� be a filtered probability space. For a given
random sample ω ∈ Ω, consider an optimal control problem where
we aim to determine an extremal control solution u� ∈ U, with U an
admissible control set, to minimize the Bolza-type cost functional,

min
u∈U

J�u;ω� ≡ ϕ�ξ1�ω�� �
1

0

L�s; ξs�ω�; us� ds (1)

such that Eqs. (2–4) are satisfied. We consider the finite-time
problem, and without loss of generality, we normalize the time
interval to be �0; 1�. In Eq. (1), ξ is the solution to a stochastic
differential equation driven by the control u ∈ U,

ξt�ω; u� � ξ0�ω� �
t

0

f�s; ξs�ω; u�;ω� ds

�
t

0

g�s; ξs�ω; u�; us;ω� dν�s; us;ω�;

∀t ∈ �0; 1�; ∀ ω ∈ Ω (2)

taking values in a smooth manifold Ξ, satisfying the probabilistic
initial and terminal boundary conditions,

P�ξ0�ω� ∈ Ξ0� ≥ 1 − ϵΞ0
; and P�ξ1�ω� ∈ Ξ1� ≥ 1 − ϵΞ1

;

∀ ω ∈ Ω (3)

and probabilistic path constraints,

P�φi�ξt�ω�� ≤ 0� ≥ 1 − ϵφ; ∀ t ∈ �0; 1�; ∀ ω ∈ Ω; ∀ φi ∈ G

(4)

The numbers ϵΞ0
; ϵΞ1

, and ϵφ take values in the unit interval, and G
is collection of real-valued functions. Readers seeking a more
comprehensive understanding of the general robust optimal control
problem are directed to several foundational works on stochastic
control [23–25].
The optimal control problem above contains several sources of

uncertainty, randomness, and stochasticity. For example, the initial
condition ξ0�ω� describes aleatoric uncertainty in the spacecraft
state due to navigational errors. The drift coefficient f�⋅;ω� rep-
resents dynamics that are independent of the control but may also
have epistemic uncertainty (e.g., uncertainty in system parameters
such as location, mass, or spherical harmonics of a central gravi-
tational body). The dispersion coefficient g�⋅;ω� allows for uncer-
tainty that is dependent on the control input, and ν�⋅;ω� is a
stochastic forcing term that may be dependent on the control
process. In the simplest case, ν could be a Lebesgue–Stieljes
measure or a Brownian motion in an Itô integral definition. If it
is simply a Lebesgue measure, then our dynamics are for a random
differential equation (e.g., uncertainty in propulsion parameters).
Equation (1) therefore includes both endogenous and exogenous
uncertainty and naturally accommodates aleatoric and epistemic
uncertainty in the space flight problem. The text by Øksendal [26]
provides a good introduction to stochastic differential equations
(SDEs). The reader can find greater detail on SDEs in Arnold [27]
or LeGall [28].
While the optimal control problem in Eq. (1) only measures the

cost for a single random sample ω ∈ Ω, it is natural to consider an
objective function that is dependent on the complete set Ω, and this
can be defined in a general manner by considering the space of
linear functionals J acting on J. By the Riesz–Markov–Kakutani
theorem [29], we can identify any element in J with the action of
integrating J against a measure. Because we are interested in the
case where Ω is a probability sample space, it is natural for us to
restrict J to the case where we identify it with probability measures.
Therefore, for the general robust problem, we ultimately consider an
objective function of the form

ψ ∘ J�u;ω� ≡ EQψ
ϕ�ξ1�ω�� �

1

0

L�s; ξs�ω�; us� ds (5)

for some ψ ∈ J with identifying probability measure Qψ . The
deterministic case is recovered whenever the probability measure
is a Dirac distribution with support on a single sample element,
Qψ � δω.
Therefore, the general robust optimal control problem can be

stated as follows. Given a cost functional ψ ∈ J over the sample
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space Ω, we seek a minimizing extremal control solution u� ∈ U to
the following problem:

min
u∈U

ψ ∘ J�u;ω� ≡ EQψ
ϕ�ξ1�ω�� �

1

0

L�s; ξs�ω�; us� ds
(6)

such that Eqs. (2–4) are satisfied.

B. Robust (MTE) Formulation

To derive the (infinite-dimensional) missed thrust design problem
from the general robust formulation, we now make several simplify-
ing assumptions. We assume that there is no stochastic forcing in
Eq. (2), and hence replace dν�s; us;ω�with ds. We also assume that
f contains no randomness and that randomness in g occurs in a very
specific way. In particular, we introduce random times that deter-
mine whether the dispersion coefficient (or forcing function) g, and
consequently the control input u, affects the state dynamics ξ. To do
this, we let the random sample space be identified with the unit
circle (i.e., Ω ≃ S1 ≃ �0; 1�), and introduce a collection of positive
strictly increasing random times τ ≡ fτi�ω� ∈ R� j τi < τi�1;
∀ i ∈ Z�;ω ∈ Ωg. Given a control function u, the dynamics of an
MTE trajectory is now explicitly given by

ξt�ω; u� � ξ0�ω� �
t

0

f�s; ξs�ω;u�� ds

�
τ1�ω�∧t

0

g�s; ξs�ω;u�; us� ds

�
i∈Z�

τ2i�1�ω�∧t

τ2i�ω�
g�s; ξs�ω; u�; us� ds;

∀ t ∈ �0; 1�; ∀ ω ∈ Ω (7)

The uncertainty due to the random times τ specifies the initiation
and duration of the MTE intervals. For a given sample ω ∈ Ω, an
MTE will be initiated if τ1�ω� < 1, with additional MTEs for any
τ2i�1�ω� < 1with i ∈ Z�. The duration of an MTE is τ2�i�1� − τ2i�1

for any i ∈ Z��0�. The symbol ∧ in Eq. (7) is the minimum operator
(i.e., a ∧ b � min�a; b�). For a given realization ω, if τ1�ω� > 1,
then no MTE will occur, since we are considering the finite-time
problem with t ∈ �0; 1�.
We now explicitly define our choice of admissible control sets by

defining the set U ≡ PC��0; 1�;Rn� for n ∈ Z� to be the piecewise
continuous functions on �0; 1�. Our admissible control set will be
given by UΩ ≡ US1, which describes the functions from S1 into U
(equivalently S1U). In what follows, we make the choice that
τ1�0� � τ1�1� > 1, and hence the sample ω ∈ f0; 1g will corre-
spond to a (deterministic) non-MTE trajectory for Eq. (7). We
denote this special case, when ω ∈ f0; 1g, with the † symbol as
u† and refer to the state solution ξ† as the reference solution. For all

other cases, when ω ∈ �0; 1�, we denote the control solution as uω

and refer to the associated state solution ξω as a realization.
The optimal control problem for the (infinite-dimensional)

missed thrust design problem can now be stated as follows. We
seek to find an extremal control solution u� ∈ UΩ to the following
problem:

min
u∈UΩ

J�u†� ≡ ϕ�ξ†1� �
1

0

L�s; ξ†s ; u†s� ds (8)

such that Eqs. (9), (3), and (4) are satisfied, where the reference and
realization dynamics are given by

ξωt � ξω0 �
t

0

f�s; ξωs � ds�
τ1�ω�∧t

0

g�s; ξωs ; us� ds

�
i∈Z�

τ2i�1�ω�∧t

τ2i�ω�
g�s; ξωs ; uωs � ds; ∀ t ∈ �0; 1�; ∀ ω ∈ Ω (9)

C. Restricted Robust (MTE) Formulation

The main challenge in solving the robust MTE problem is the
definition and approximation of the probability distribution for the
random times τ, which is necessary for satisfying the dynamical
constraints of Eq. (9) that couples the reference and realization
solutions. Based on analysis of past LT missions, Imken et al. [1]
have suggested that the Weibull distribution is a good fit for the
initiation and duration times of an MTE. The Weibull distribution is
a continuous distribution and therefore achieving numerical trac-
tability would require some sample approximation. In this paper, we
assume a simpler distribution than the Weibull. Our assumptions are
more in line with those of McCarty and Grebow [16], and Venigalla
et al. [17]. See Fig. 1 for a schematic of the restricted missed thrust
problem. We now describe these assumptions, by first stating them
in words and then giving the mathematical definitions as subitems:
A1. Only one MTE will occur for any realization.

1) For each ω ∈ Ω, assume that τ3�ω� > 1.
A2. Only a finite number of MTE initiations are allowed, with

each corresponding to the start of a thrust segment (a shooting
transcription is used and will be further explained in Sec. II.D).

1) Assume that �0; 1� ⊂ S1 � Ω is partitioned into a collection
of N intervals �Ei�Ni�1.

2) Assume that for every interval Ei, we have for any
ω0;ω1 ∈ Ei, the relation τ1�ω0� � τ1�ω1�.
A3. Only a finite number of MTE durations are allowed.

1) Assume that each interval Ei is further partitioned into a
collection of M subintervals �Ei;j�Mj�1

.

2) Assume that for every subinterval Ei;j, we have for any
ω0;ω1 ∈ Ei;j, the relation τ2�ω0� � τ2�ω1�.
A4. Enforce deterministic boundary conditions.

1) Assume that ϵΞ0
� ϵΞ1

� 0.

Fig. 1 Schematic of restricted robust problem with example reference and realization trajectories, and corresponding throttle profiles.
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A5. Assume that no flight path constraint exists (beyond the
dynamical constraint).

1) Assume that G � ∅ (i.e., the empty set).
A6. Lastly, we will solveNM versions of our robust MTE optimal

control problem, with each case corresponding to a different prob-
ability distribution P on Ω.

1) For each i ∈ f1; : : : ; Ng; j ∈ f1; : : : ;Mg, define a robust
MTE optimal control problem where P�Ei;j ∪ f0; 1g� � 1.
Assumption A1 specifies the number of MTEs we consider in the

subsequent analysis. While seemingly restrictive, it is well-supported
by statistical evidence from historical missed thrust data [1]. For the
range of total thrust arc durations observed in the nonrobust solutions,
this single-MTE approach successfully captures approximately 90%
of observed scenarios. We sample MTE durations from a distribution
fit to representative mission data, encompassing both brief disruptions
(0.5 TU; or ∼ 6.5 h) and extended outages (30 TU, or ∼17 days).
With longer-duration events accounting for approximately 99% of
scenarios, this framework effectively captures both nominal and
extreme failure cases (see Fig. 2 for the distribution).
Assumption A6 addresses the spatial and temporal characteristics

of MTEs—specifically, where they occur and how long they last.
Even within a single-MTE approach, we must consider that the
outage could occur at any point in the trajectory. In fact, for a truly
comprehensive analysis, we would ideally examine the impact at
every point along the reference trajectory where there is a nonzero
probability of an MTE, weighting each realization according to the
measure of the distribution over the interval it represents. This could
potentially result in an infinite number of realizations, i.e., an
infinite number of couplings between the reference trajectory and
its corresponding realization solutions. The computational complex-
ity of our framework increases significantly with each additional
coupling between the reference solution and its realizations. Even
with a single MTE with a single coupling (i.e., a single location),
generating sufficient solutions for meaningful statistical analysis
demands substantial computational resources, given the inherent
complexity of optimization in chaotic multibody dynamical sys-
tems. While incorporating multiple MTEs would more accurately
reflect certain mission profiles, it would significantly increase com-
putational complexity through an expanded sampling space and
larger search domain. Our current analysis provides a tractable
approach for validating the proposed methods and identifying key
trends, providing valuable insights into how invariant manifolds
influence robust LT trajectory design, while maintaining both com-
putational feasibility and statistical rigor.
However, we would like to emphasize that the framework we

present is readily scalable to accommodate multiple MTEs. Future
work will relax the single-event constraint to address multi-event
sequences, extending this framework’s applicability to a broader
range of mission design scenarios, building upon the insights gained
from this foundational study.

For completeness, we now state the optimal control problem for
the restricted missed thrust design problem under the additional
assumptions just given,

min
u∈UΩ

J�u†� ≡ ϕ�ξ†1� �
1

0

L�s; ξ†s ; u†s� ds (10)

such that Eqs. (11) and (12) are satisfied, where the reference and
realization dynamics are given by

s:t: ξωt � ξ†0 �
t

0

f�s; ξωs � ds�
τ1�ω�∧t

0

g�s; ξωs ; u†s� ds

�
t

τ2�ω�
g�s; ξωs ; uωs � ds; ∀ t ∈ �0; 1�; ∀ ω ∈ Ω (11)

satisfying the boundary conditions

ξω0 ∈ Ξ0; ξω1 ∈ Ξ1; ∀ ω ∈ Ω (12)

D. Transcription to a Nonlinear Program

In this study, we solve the optimal control problem of Eq. (10)
using the Dynamically Leveraged Automated (N) Multibody Tra-
jectory Optimization (DyLAN) software developed by Beeson et al.
[30]. DyLAN brings together dynamical systems tools with local
and global optimization methods to search for solutions to optimal
control problems in multibody environments. A direct approach
with a forward-backward shooting transcription is used to convert
the optimal control problem into a nonlinear program (NLP). The
gradient-based numerical optimizer SNOPT [31] is employed to
solve the resulting NLP, with initial guesses generated by the mon-
otonic basin hopping global search algorithm [32–36]. Following the
last assumption of Sec. II.C, we fix a version of our robust MTE
problem with a probability distribution having P�Ei;j ∪ f0; 1g� � 1
for some i ∈ f1; : : : ; Ng and j ∈ f1; : : : ;Mg and then define the NLP
as follows:

min
x†∈RN†

; xω∈RNω
J�x†� � −m†

f ;

subject to c†k�x†� � 0; cωk �xω� � 0; ∀ k ∈ E;

c†k�x†� ≤ 0; cωk �xω� ≤ 0; ∀ k ∈ I (13)

where the index set E identifies the equality constraints, which consist
of midpoint defect errors for the position, velocity, and mass con-
tinuity of the reference and realization. The index set I identifies the
inequality constraints, which consist of bounds on the control varia-
bles for the reference x† and realization xω. The reference control
decision variable has N† � 3N† � 4 components given by

Fig. 2 Distribution of number of MTEs and their durations based on empirical data of past missions (see Imken et al. [1]).
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x† � T†
s ; T

†
i ; T

†

f; u
†

1; u
†

2; : : : ; u
†

N† ; m
†

f (14)

where T†
s is the shooting time, T†

i the initial coast time, and T†

f the
final coast time, and, therefore, the total time of flight is
T†
i � T†

s � T†

f. Note that u
†

k ∈ R3 is a constant thrust vector for the
kth thrust segment that represents the throttle, in-plane, and out-of-
plane thrust angle. Lastly, m†

f is the final delivered wet mass. There-
fore, the total number of constraints for the reference solution is equal
to N† � 7, which includes the N† inequality constraints, and seven
equality constraints. The thrust segments each have equal time of
T†
s∕N†.
The transcription for the realization is similar, but xω will contain

fewer control variables. The exact number is dependent on when the
MTE for xω occurs. In particular, the total number of decision
variables will be Nω � 3Nω � 4 � 3�N† − i� � 4, where the
MTE occurs at the start of the ith thrust segment for the reference
solution. This adaptive segmentation approach, which is explained
in greater detail in Sinha and Beeson [37], promotes congruence in
control authority between the reference and realization solutions and
therefore enables a more measured understanding of the role of
MTEs on the reference control solution. A breakdown of the number
of decision variables for both the nonrobust and robust cases is
summarized in Table 1. Similar to the reference solution, the number
of equality constraints remains unchanged for the realization sol-
ution, while the number of inequality constraints becomes Nω.
The derivatives of the matchpoint defect errors with respect to the

control variables are computed analytically. Analytic derivatives
have been extensively studied by Ellison et al. in the context of
nonrobust LT trajectory design [38]. To compute the analytic deriv-
atives for the nonrobust solution, we adopt a similar methodology to
their approach. In the robust trajectory design problem, however, it
becomes necessary to augment the dynamical information by incor-
porating the flow of derivatives from the reference solution to the
realization solutions. For further details on the analytic derivatives,
we refer the reader to Sinha and Beeson [37].

III. Dynamical Model

A. Circular Restricted Three-Body Problem

In this study, we consider the motion of a spacecraft in the circular
restricted three-body problem (CR3BP) [39–41]. The CR3BP
describes the motion of the spacecraft, whose mass is assumed to
be negligible, under the influence of two celestial bodies, such as the
Earth and the Moon, which rotate about their common center of
mass in circular orbits. To elucidate relevant structures in the
problem, it becomes convenient to write the spacecraft’s equations
of motion in a synodic reference frame that rotates at the same rate
as the two primaries. The state of the spacecraft in phase space then
can be described by a set of scalars �q1; q2; q3; _q1; _q2; _q3� describ-
ing the position and the velocity in the rotating frame. The analysis
can be further simplified by nondimensionalizing the equations
using a suitable choice of units that reduces the number of param-
eters in the problem to one, namely, the mass parameter
μ � m2∕�m1 �m2�, where m1 is the mass of the primary and m2 ≤
m1 is the mass of the secondary. With this choice of units, the
gravitational constant and the mean motion both become unity and
lead to the following equations of motion:

�q1 − 2 _q2 � −
∂U
∂q1

� hu; q̂1i;

�q2 � 2 _q1 � −
∂U
∂q2

� hu; q̂2i;

�q3 � −
∂U
∂q3

� hu; q̂3i (15)

where q̂i is the ith canonical ordinate and u is the control
perturbation;

U�q1; q2; q3� ≡ −
1

2
q21 � q22 −

1 − μ

r1
−

μ

r2
−
1

2
�1 − μ�μ

is the effective gravitational potential; and

r1�q1; q2; q3� ≡ �q1 � μ�2 � q22 � q23;

r2�q1; q2; q3� ≡ �q1 − �1 − μ��2 � q22 � q23

are the distances between the spacecraft to the primary and the
secondary, respectively, in the rotating frame coordinate system.
For an LT trajectory, it is also necessary to account for the change

in the spacecraft mass, which can be done by simply augmenting the
mass to the state of the spacecraft, where the change in the massm is
governed by the differential equation:

_m � −
juj
Ispg

(16)

where juj is the 2-norm and hence the thrust magnitude,
g � 9.806 m∕s2 is the gravitational acceleration on Earth, and Isp
is the constant specific impulse of the propulsion system. We
neglect any other perturbations on the spacecraft (e.g., solar radia-
tion pressure) such that the only other term perturbing the natural
dynamics is the effect of the control input.
In the absence of control perturbations, there exists an integral of

motion in the synodic reference frame,

C�q1; q2; q3; _q1; _q2; _q3� ≡ −� _q12 � _q2
2 � _q3

2� − 2U

known as the Jacobi integral (or Jacobi constant). The Jacobi integral,
which can be thought of as a measure of the energy of the spacecraft,
remains constant between maneuvers (i.e., the Jacobi integral remains
constant during the coast arcs in a spacecraft trajectory).

B. Invariant Manifolds of Unstable Periodic Orbits

Despite being relatively simple, this model exhibits rich dynami-
cal properties, yielding a multitude of DS that can be leveraged
during LT trajectory design. There exist five equilibrium points in
this model known as the libration points. Three of these points,
L1;L2; andL3, are referred to as the collinear equilibrium points as
they lie on the line joining the primary and the secondary, and the
remaining two points L4;L5, which form equilateral triangles with
the primary and the secondary as other vertices, are referred to as the
noncollinear equilibrium points. It was first shown by Poincaré [42]
and later by Hénon [43–47] that, in addition to these equilibrium
points, there also exists an infinite number of periodic solutions in
the three-body model. Since then, various analytical and numerical
tools have been developed to compute these periodic orbits in the
neighborhood of the Lagrange points for various systems. Each type
of periodic orbit has its own distinct features, making them well-
suited for specific applications.
The unstable periodic orbits within this dynamical model possess

normally hyperbolic invariant manifolds [40,48,49]. When we refer
to a structure as invariant, we imply that it is time-invariant, mean-
ing that these structures remain unchanged throughout the evolution
of the dynamical time. Invariant manifolds transport material

Table 1 Number of decision variables
(number of realizations � 1)

Parameter Nonrobust Robust

Number of segments N† N† � Nω

Control vector components
Time of flight 3 6
Thrust vector 3N† 3(N† � Nω)

Final mass 1 2
Number of constraints 7 14
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between the different realms of this model and therefore can also be
used to construct low-energy spacecraft trajectories. They can also be
classified as stable and unstable: a stable invariant manifold encom-
passes all points that converge to a limit set as time progresses toward
infinity; conversely, an unstable manifold comprises all points that
converge to the same limit set as time retrogresses toward negative
infinity. We denote the unstable invariant manifold corresponding
to a periodic orbit γ by Wγ

U. This is the set Z such that z�t� → γ as
t → −∞, ∀ z ∈ Z. Conversely, Wγ

S represents the stable invariant
manifold, and comprises the set Z such that z�t� → γ as t → ∞,
∀ z ∈ Z. A spacecraft originally on γ will shadow Wγ

S when per-
turbed in the direction of the stable eigenvector of the monodromy
matrix corresponding to γ, and will shadow Wγ

U when perturbed in
the direction of the unstable eigenvector. Invariant manifolds share the
same Jacobi integral as the periodic orbits to which they are associ-
ated. The invariant manifolds associated with the 3:4 and 5:6 resonant
orbits in the Jupiter–Europa system are shown in Fig. 3. The 3:4
resonant orbit (C3∶4 � 2.995) is shown here in solid black, and the
5:6 resonant orbit (C3∶4 � 3.005) is shown in dashed black. The 3:4
unstable invariant manifold W3∶4

U is shown in orange, and the corre-
sponding stable invariant manifoldW3∶4

S is in blue. Similarly, the 5:6
unstable invariant manifold W5∶6

U is shown in purple, and the corre-
sponding stable invariant manifold W5∶6

S is in green.
The invariant manifolds describe the local dynamics in the neigh-

borhood of the periodic orbits and provide a global template for LT
trajectories. As mentioned before, previous studies have shown that
optimization algorithms applied to minimum-fuel problems and
without explicit prior knowledge of the underlying DS qualitatively
converge to locally optimal solutions that align themselves with
these structures. Anderson and Lo [22] extended the work of Lo [50]
to investigate a minimum-fuel LT moon tour in the Jupiter–Europa
CR3BP, originally developed by Lam et al. [51], using the trajectory
design tool Mystic [52]. They discovered that the numerical optimal
trajectories indeed appear to shadow the invariant manifolds of
resonant orbits. The main purpose of this paper is to further extend
Anderson and Lo’s work beyond qualitative understanding to a
quantitative one, as well as to study robust trajectories and their
dependence on the underlying DS. We aim to compare the behavior
of robust and nonrobust trajectories in relation to these structures.
Having knowledge of the relationship of the robust solutions to the
DS can be useful in developing good initial guesses and efficient
algorithms for the global design of robust optimal LT trajectories.

IV. Analysis Methods

A. Poincaré Surface of Sections

Poincaré return maps, or simply Poincaré maps, are an effective
tool for analyzing rotational flows such as periodic or quasi-periodic

orbits, or even flow in the vicinity of a periodic orbit, and can
therefore be used to investigate the trajectories as well as pertinent
invariant manifolds [48,49]. We consider a point x ∈ S on the
surface S, which we evolve in time according to the governing
dynamical equations until it intersects S again transversely. We
denote the intersection of the point x with S as P�x�. Therefore,
P�x� represents the first return of the trajectory to S, P2�x� repre-
sents the second return of the trajectory to S, and so on. We can
continue to evolve x in time and record its state after every inter-
section with S, and by doing so, we effectively reduce the global
orbit structure governed by differential equations to a discrete-time
dynamical system given by the map P. A Poincaré map can there-
fore be mathematically described by P: S → S, where S is referred
to as the Poincaré surface of section, or simply Poincaré section (see
Fig. 4a for a visual representation). The forward-in-time integrated
map of x is represented by P�x� and is indicated with a circle.
Conversely, the backward-in-time integrated map of x is represented
by P−1�x� and is indicated with a square. The forward-integrated
map coincides with the backward-integrated map of a trajectory
only if the point x belongs to a periodic orbit. If a trajectory is
(sufficiently) planar, the map P provides sufficient information to
fully characterize the trajectory.
An example Poincaré section is shown in Fig. 4. Every puncture

point on a given Poincaré section possesses the same Jacobi integral.
Puncture points corresponding to the evolution of the forward
integrated nonrobust solution P�xnr� and robust solution P�xr�
are denoted by black and blue circles, respectively, which were
computed by mapping points along the state forward in time without
thrust until it intersected S. Similarly, puncture points correspond-
ing to the evolution of the backward integrated nonrobust P−1�xnr�
and robust trajectory P−1�xr� are denoted by black and blue
squares. In this study, we only record the first puncture point for
trajectories, discarding the subsequent ones.
The puncture points corresponding to the stable and unstable

invariant manifolds for the relevant resonant orbits are an important
part of the analysis in this study. In our study, the sets containing
these puncture points are labeled as Wγ

i , where the superscript γ
allows us to discern what type of periodic orbit we are referring to
and the subscript i allows us to discern the stability of the invariant
manifolds. To compute the invariant manifold puncture points, one
begins by considering perturbations parallel (and antiparallel) to the
eigenvectors of the monodromy matrix, which are then propagated
forward (if unstable) or backward (if stable) in time until their first
intersection with S. The states of these puncture points are recorded
and plotted using a coordinate system of choice (e.g., q1 − _q1). In
this study, we consider a range of perturbation from [1 × 10−6,
3 × 10−1] (in nondimensional units) both parallel to and antiparallel
to the eigenvectors of the monodromy matrix, which are then

Fig. 3 The 3:4 and 5:6 resonant orbits with corresponding unstable and stable manifolds.
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propagated until their first intersection with S. Alternatively, one
could compute the invariant manifold puncture points by consider-
ing a state on γ with a fixed perturbation magnitude and capturing
multiple intersections with S. Using a range of perturbation magni-
tudes and recording the first intersection is equivalent to applying a
fixed perturbation magnitude and recording multiple intersections,
as long as the perturbations are initialized within an acceptable
range where the linear approximation of the manifolds is realized.
W3∶4

U represents the intersection of the unstable manifold of the 3:4
resonant orbit (orange), W3∶4

S represents the intersection of the
stable manifold of the 3:4 resonant orbit (blue), W5∶6

U represents
the intersection of the unstable manifold of the 5:6 resonant orbit
(purple), andW5∶6

S represents the intersection of the stable manifold
of the 5:6 resonant orbit (green). Approximately 10,000 puncture
points are computed for each invariant manifold in the subsequent
analysis.
The background points (gray) are computed by first considering

points on a uniform grid on the x-axis on S and then integrating
these points forward in time until they intersect the surface a number
of times. The number of points retained for subsequent analysis is
largely problem dependent but should be chosen such that a suffi-
ciently detailed visual representation of the global dynamical flow
template is visible. In this study, the background points are com-
puted by considering 10,000 points on an equally spaced grid on the
x-axis on S and integrating forward in time until they intersect the
surface 10 times. The first five puncture points were discarded to
remove the distortion of the grid during integration, and the remain-
ing puncture points were recorded. The number of intersections
being retained was arbitrarily chosen, but for the context of this
research, this choice does not impact the results since the back-
ground points are only for visual purposes and do not affect any of
the subsequent analyses. Note that 50,000 points were recorded for
the background points in total.

B. Jacobi Integral of Low-Thrust Trajectories

The Jacobi integral of a low-thrust trajectory changes whenever
the spacecraft executes a maneuver, so we need to ensure that the
invariant manifolds, to which we are comparing the trajectory
puncture points, possess the same Jacobi integral. To do so, we first
uniformly discretize the Jacobi integral interval between the initial
orbit (3:4 resonant orbit, C3∶4 � 2.995) and the final orbit (5:6
resonant orbit, C5∶6 � 3.005) with steps of 0.001, and for each
point in that interval, we compute the resonant orbit (and their
invariant manifolds) possessing that Jacobi integral. We store the
information in a look-up table, which will be used later in the
subsequent analysis. Ideally, we would like to compare every point
on a trajectory with the pertinent resonant orbits at those energy
levels, but doing so would be numerically intractable. Our approach
closely parallels the methodology presented by Anderson and Lo
[22]. Figure 5 illustrates the resonant orbits used in this analysis. To
compute the resonant orbits, we use the initial conditions from the
database developed by Restrepo and Russell [53]. For each resonant
orbit shown, their invariant manifolds are also computed (not shown
in the figure), and approximately 10,000 puncture points are
recorded for each invariant manifold.
Figure 6 illustrates the Jacobi integral associated with a represen-

tative nonrobust solution. As the spacecraft’s trajectory evolves in
time, its Jacobi integral undergoes a change every time the space-
craft executes a maneuver. We begin by filtering points along the
trajectory possessing a Jacobi integral close to that of one of the
periodic orbits in our look-up table (in our case, we set this threshold
to 1 × 10−6). For example, the first point corresponds to a Jacobi
integral of ≈2.995. So, we compare its forward and backward
integrated trajectory with the 3:4 and 5:6 resonant orbit invariant
manifolds possessing the same energy, shown with a solid line and a
dashed black line, respectively, in each subfigure. The remaining
orbits in the dictionary are shown in the background in gray. The
corresponding Poincaré section S with the relevant puncture points

Fig. 5 Family of 3:4 and 5:6 resonant orbits colored by Jacobi integral levels.

Fig. 4 Schematic of a Poincaré map along with an example Poincaré section.
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is also shown in the subfigure. From each filtered subset, we
randomly select a point and integrate it forward and backward in
time under natural dynamics until they intersect with the Poincaré
section S to produce P�x� and P−1�x�, respectively. We compare
these puncture points to those of the invariant manifolds of the
resonant orbits with the same Jacobi integral, ensuring that all points
on a given Poincaré section possess the same energy.

C. Distance Metrics on Poincaré Surface of Sections

By the process outlined above, it is possible to visualize the
evolution of the trajectory puncture points on the Poincaré section
S, and compare them to the invariant manifolds of the pertinent
resonant orbits. However, in addition to qualitatively visualizing the
solutions, we also aim to understand quantitatively if there is a
difference in the behavior of the solutions with respect to the
invariant manifolds, and in that regard, we introduce two distance
metrics on S (see Fig. 7 for a schematic).

1. Orthogonal Distance to the Nearest Invariant Manifold

First, we introduce a distance metric to quantify the degree to
which a given trajectory leverages the underlying invariant mani-
folds in our problem. We define dST�xP ;W� as the shortest ortho-
gonal distance between xP , a trajectory puncture point, and W, a
set of invariant manifold puncture points on S. For example,
dST�P�xnr�;W3∶4

U � represents the shortest distance between the non-
robust forward-integrated trajectory puncture point P�xnr� and the
unstable manifold puncture points of the 3:4 resonant orbit W3∶4

U .
We denote the shortest distance from a given trajectory puncture
point xP to any of the invariant manifolds as

d̂ST�xP� ≡min
Wγ

i

dST xP ;Wγ
i (17)

where xP may refer to either the forward-integrated trajectory point
P�x� or the backward-integrated trajectory point P−1�x�. Con-
versely, we denote the shortest distance from a given invariant
manifold Wγ

i of a resonant orbit to any of the trajectory puncture
points as

�dST�Wγ
i � ≡ min

xP∈fP�x�;P−1�x�g
dST xP;Wγ

i (18)

where Wγ
i may refer to W3∶4

U , W3∶4
S , W5∶6

U , or W5∶6
S .

Fig. 7 Example Poincaré section illustrating distance metrics and their
relationship to invariant manifolds.

Fig. 6 Jacobi integral for a nonrobust solution with trajectory points and corresponding Poincaré section.
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2. Distance Along the Nearest Invariant Manifold

We introduce an additional distance metric to quantify the dis-
tance a trajectory must traverse along an invariant manifold to reach
the nearest resonant orbit. Let w ∈ W represent a point in the set
containing the invariant manifold puncture pointsW. The arc length
between w and the separatrix, measured along the invariant mani-
fold, quantifies the distance the spacecraft will have to coast to reach
the corresponding resonant orbit. We denote this arc length as
dSA�xP; w�. Of particular interest is the distance along the invariant
manifold of an invariant manifold puncture point that is orthogo-
nally closest to the trajectory puncture point, i.e., the invariant

manifold puncture points that yields d̂ST�xP�, which we denote as

d̂SA�xP� ≡ dSA�xP ; w� s:t: w � argmin
Wi

j

dST xP ;Wi
j (19)

Conversely, we denote the arc length along a given invariant mani-
fold puncture point set Wγ

i from the point in the invariant manifold
puncture point set closest to the trajectory puncture points as

dSA�Wγ
i � ≡ min

xP∈fP�x�;P−1�x�g
dSA�xP; w� s:t: w � argmin

Wi
j

dST xP ;Wi
j

(20)

The arc length L along the invariant manifolds is computed as the
cumulative Euclidean distance between consecutive points along the
manifold trajectory in the specified coordinates on S, given by

L �
i

Δq2i � Δ _q2i (21)

whereΔqi andΔ _qi represent the differences in position and velocity
coordinates between consecutive points on the arc. To ensure the
accuracy of this approximation, a dense mapping of the invariant
manifold on S is necessary.
Finally, we introduce the following definitions to represent the

minimum distance between the invariant manifold puncture points
and the trajectory puncture points, irrespective of whether they were
forward-integrated or backward-integrated in time:

d̂ST ≡minfdST�P�x��; dST�P−1�x��g (22)

d̂SA ≡minfdSA�P�x��; dSA�P−1�x��g (23)

The metric d̂ST provides a measure of how far, at any given time, the
trajectory is from any of the invariant manifolds. By recording this
distance at multiple time snapshots across different solutions, we
can assess how effectively different solution families exploit the
underlying invariant manifolds for minimum-fuel transfers, thereby
providing insights into the role of DS in the optimization process.

On the other hand, the metric d̂SA quantifies the distance the space-
craft will have to coast to reach the nearest resonant orbit at any
given energy level. This distance allows us to elucidate how fast the
trajectory can coast along the nearest invariant manifold and,
thereby, provides deeper insights into how these trajectories are
leveraging these structures.

V. Results and Discussion

A. Numerical Experimental Design

In this section, we present the implementation details about the
numerical experiments. We consider a minimum fuel transfer
between a 3:4 resonant orbit and a 5:6 resonant orbit in the
Jupiter–Europa system, characterized by the nondimensional gravi-
tational parameter μ equal to 2.52856 × 10−5. The boundary con-
ditions for the optimal control problem are shown in Fig. 8, where
the initial boundary condition is given by �−0.37322; 1.20130; 0.0;
0.33434; 0.25594; 0.0�, and the terminal boundary condition is
given by as �−0.68463;−0.96387; 0.0;−0.20325; 0.20764; 0.0�,

with the position and velocity components written in nondimen-
sional units. In the Jupiter–Europa CR3BP model, 1 DU �
670; 900.0 km; 1TU � 48; 822.8 s; and 1VU � 13.7 km∕s.
The spacecraft parameters are summarized in Table 2. The space-

craft has a dry mass of 700.0 kg and an initial fuel mass of 300.0 kg.
It operates under a constant specific impulse propulsion model with
a specific impulse of 1000.0 s and a maximum thrust acceleration
of 0.001 m∕s2. We use a forward–backward control transcription
characterized by 50 segments. Numerical tolerances for matchpoint
constraint violations are defined as 1 × 10−6 DU for position and
1 × 10−6 VU for velocity, and 1 × 10−3 kg for mass. Temporal
bounds include a shooting time range of �0.0; 90.0� TU, an initial
coast time range of �0.0; 25.46898� TU, and a final coast time range
of �0.0; 38.14625� TU, where the upper bounds on the coast times
correspond to the orbital period of the 3:4 resonant orbit and the
orbital period of the 5:6 resonant orbit, respectively.

B. Qualitative Analysis

To differentiate between robust and nonrobust solutions, we
analyze, both qualitatively and quantitatively, snapshots across the
evolution of a specific solution and compare the robust puncture
points with their nonrobust counterparts. Intuitively, one might
expect robust solutions to be less efficient than nonrobust ones,
leading to larger deviations from the underlying invariant manifolds,
and this is certainly true for the solutions shown in Fig. 9, which
corresponds to an optimal nonrobust solution and an optimal robust
solution, where τ1 coincides with the beginning of the 44th control
segment, and Δτ � 2.5 TU. Looking at the temporal evolution of
the Jacobi integral over time, we notice that the rate of change of the
Jacobi integral of the nonrobust solution is mostly nonnegative,
while that of the robust solution exhibits more frequent fluctuations.
A majority of robust solutions display similar behavior, and this
observation aligns with our hypothesis that robust solutions can
sometimes undergo inefficient maneuvers to attain feasibility.
The evolution of the puncture points on S for both solutions is

shown in Fig. 10. The robust trajectory puncture points follow a
different path than the nonrobust puncture points, but both seem to
be relatively well-aligned with the invariant manifold puncture

Fig. 8 Boundary conditions for the LT transfer.

Table 2 Spacecraft parameters

Parameter Value

Number of segments 50
ISP, s 1000.0

Thrust acceleration, m∕s2 0.001

Dry mass, kg 700.0
Fuel mass, kg 300.0
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points. We now analyze the nonrobust solution in more detail. As
one would expect, both P�xnr� and P−1�xnr� begin at the 3:4
separatrix (frame I). P�xnr� remains close to this point (frames II
and III), before transitioning to W3∶4

U , which it flows along (frames
IV and V). Then, it transfers between invariant manifolds (frames
VI–IX), maintaining close proximity to bothW5∶6

U andW5∶6
S , until it

eventually reaches the 5:6 separatrix (frame X). On the other hand,
P−1�xnr� immediately latches onto W3∶4

S which it flows along
(frames II and III), before it returns back to the separatrix (frame
IV and V). Then, it transitions to W5∶6

S , which it flows along
(frames VI–IX) until it reaches the 5:6 separatrix (frame X). Between
frames I and V, the spacecraft has optimized its thrust to move P�xnr�
alongW3∶4

U while aligningP−1�xnr� for the subsequent transition into
W5∶6

S . Then, between frames VI and X, the thrust is used to transition
P−1�xnr� along W5∶6

S , while transferring P�xnr� between different
invariant manifolds until they settle at the 5:6 separatrix.
Moving on to the robust solution, naturally, both P�xr� and

P−1�xr� begin at the 3:4 separatrix (frame I). P�xr� aligns itself
with the W3∶4

U , which it flows along (frames II–VI). In the sub-
sequent frames, it “oscillates” about the 5:6 separatrix (frames
VII–IX) before eventually setting at the separatrix (frame X).
P−1�xr�, on the other hand, follows a rather interesting path. We
do not see any major change during the initial frames (frames I–VI).
Then, we see it abruptly transition to W5∶6

S (frame VII), which it
flows along (frames VII–IX) until it reaches the 5:6 separatrix
(frame X). Between frames I and VI, the spacecraft has optimized
its thrust to first move P�xr� along W3∶4

U while making minimal
changes to P−1�xr�, and then, in frame VII, to move both P�xr� and
P−1�xr� over toW5∶6

S . Finally, between frames VII and X, the thrust

is mostly used to move P�xr� and P−1�xr� alongW5∶6
S (frames VII–

IX) until they settle at the 5:6 separatrix.

C. Quantitative Analysis

From the analysis of this solution, we observe that both robust
and nonrobust trajectories exhibit certain qualitative similarities and
differences. Notably, the robust solution appears to flow along the
invariant manifolds, whereas the nonrobust solution appears to
transfer between the invariant manifolds (e.g., frames VI–IX). How-
ever, generalizing the relationship between trajectory and invariant
manifold puncture points based solely on visual inspection of a
single solution pair is difficult. The observed trend in the solutions
shown in Sec. V.B may be specific to this particular pair and may not
be representative of the entire solution family. Further, it is also
important to note that the snapshots are nonuniform in time. As a
result, we often notice large “jumps” in the path of the trajectory
puncture points (e.g., frames V and VI for the nonrobust solution;
frames VI and VII for the robust solution). So, instead, by analyzing
a collection of solutions, we hope to be able to “average out” the
nonuniformity in time to globally characterize the solution trends in
relation to the invariant manifolds.
To assess whether the observed trend persists across solution

families, we first generate a set of feasible and optimal solutions
for both the nonrobust and robust problems, varying the parameters
τ1 and Δτ. The optimal solutions, a subset of the feasible solutions,
comprise the solutions that meet the optimizer’s optimality criteria,
specifically those exiting with SNOPT Exit Info 1 [54]. The
number of solutions and puncture points used in this study is
presented in Table 3.

Fig. 9 Representative nonrobust and robust solutions with thrust arcs and Jacobi integrals.
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In this section, we provide a detailed quantitative analysis to
complement the qualitative observations. Using the distance metrics
discussed in Sec. IV.C, we aim to examine the statistical differences
between the nonrobust and robust solutions relative to the invariant

manifolds. We begin by computing d̂ST and d̂SA for the nonrobust and
the robust solutions and then compare the statistics between the
feasible solutions and the optimal solutions in each category
(Figs. 11, 12). The circles represent the mean, the horizontal lines
represent the median, and the colored bars represent the inter-
quartile range.
As expected, d̂ST is zero at the first and the last frames since the

trajectory puncture points at those frames coincide with the separa-
trices of the 3:4 and 5:6 resonant orbits, respectively, and therefore

the corresponding d̂ST should be exactly zero. The same idea applies

for d̂SA. As we progress through the energy levels, the mean d̂ST
increases for both solution categories. Since the transfer is from a
3:4 resonant orbit farther from Europa to a 5:6 resonant orbit closer
to Europa (see Fig. 5), we anticipate greater sensitivity in the
solutions during the later energy levels, which correspond to points
along the trajectory closer to Europa, and therefore subject to
dynamics highly sensitive to perturbations. Accordingly, we expect
the puncture points corresponding to the later energy levels to show
less reliance on the invariant manifolds compared to those at earlier
levels, as the dynamics may be too chaotic for the optimizer to
leverage the invariant manifolds effectively for a finite horizon
minimum-fuel transfer. This expectation is confirmed by the higher

Table 3 Number of solutions and punctures

Nonrobust Robust

Feasible Optimal Feasible Optimal

Number of solutions 21,455 9,393 6,789 958

Δτ (TU)

0.5 1,051 171
1.0 932 140
2.5 1,016 156
5.0 1,002 153
10.0 969 133
15.0 951 121
30.0 868 84

τ1
Forward shooting arc 2,850 224
Backward shooting arc 3,939 734

Number of punctures 168,722 143,890 65,895 17,202

Δτ (TU)

0.5 10,068 3,071
1.0 8,902 2,399
2.5 9,918 2,914
5.0 9,702 2,753
10.0 9,459 2,433
15.0 9,275 2,104
30.0 8,571 1,501

τ1
Forward shooting arc 33,014 4,300
Backward shooting arc 32,881 12,902

Fig. 10 Snapshots showing temporal evolution of puncture points on S for nonrobust (black) and robust (blue) solutions.
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mean d̂ST observed at the later energy levels relative to the earlier
ones. Throughout the analysis, however, the optimal solutions con-
sistently remain closer to the invariant manifolds on average com-
pared to the feasible solutions, a trend that persists across energy
levels and solution categories, suggesting that closer alignment with
the invariant manifolds is necessary to achieve optimality. Robust

feasible solutions exhibit a slightly higher d̂ST compared to the
nonrobust solutions, while the optimal set of robust solutions dem-

onstrates a substantial decrease in d̂ST , bringing it nearly in line with
those for the nonrobust solutions.
The statistics for d̂SA show a similar trend between the feasible and

optimal solutions, for both the nonrobust and the robust solution

categories. For both solution categories, the d̂SA remain relatively
small during the initial energy levels, which increases as we
progress through the energy levels, before decreasing again at the
later energy levels. Given that the solutions involve transfers

between resonant orbits, we expect d̂SA to remain small when the
trajectory is in proximity to the resonant orbits, which justifies the

lower d̂SA in the earlier and the later energy levels when the space-
craft is departing the 3:4 resonant orbit and entering the 5:6 resonant
orbit, respectively, and higher in between.
To compare the robust solutions with the nonrobust solutions as

we vary τ1 andΔτ, we calculate the fold change in the mean distance
metrics for the robust solutions relative to their nonrobust counter-
parts. To visualize this change, we use the log2 of the fold change as
a metric, where a value of zero indicates that the distance metrics for
the robust solutions and the nonrobust solutions are the same, a
positive value indicates an increase, and a negative value indicates a
decrease. We remove the first and last energy levels from the

subsequent analysis since they correspond to the separatrices of
the 3:4 and 5:6 resonant orbits, respectively. We begin by analyzing
the solutions grouped according to Δτ, noting that each group
contains solutions with varying τ1. Subsequently, we analyze the
solutions by grouping them according to τ1, where each group
similarly includes solutions with different Δτ.

1. Dependence on Δτ
In this section, we explore how the relationship to the invariant

manifolds changes as we vary Δτ for the robust solutions. If we

consider the entire feasible solution set, the mean d̂ST across Δτ for
the robust solutions is greater than that for the nonrobust solutions
(Fig. 13a). However, if we focus on the optimal solution subset, the

mean d̂ST across Δτ for the robust solutions significantly diminishes
and appears to resemble the nonrobust solutions more closely,
especially toward the later energy levels (Fig. 13b). We even notice
some robust solution categories exhibiting closer alignment to the
invariant manifolds than the nonrobust solutions. This observation is
particularly significant because, as we have seen before, the sol-
utions rely less on invariant manifolds at the later energy levels. The
fact that robust solutions exhibit comparable, and in some cases
stronger, alignment with these invariant manifolds at the later energy
levels, relative to the nonrobust solutions, suggests an important
insight. Despite the chaotic dynamics, robust optimal solutions are
still effectively leveraging the invariant manifolds, almost as closely
as the nonrobust solutions. The results also suggest that while
feasible robust solutions may generally deviate from the invariant
manifolds, the optimal ones tend to shadow the invariant manifolds
almost as closely as the nonrobust optimal solutions.

Fig. 11 The d̂
S
T and d̂

S
A for nonrobust solutions.

Fig. 12 The d̂
S
T and d̂

S
A for robust solutions with varying Δτ and τ1.
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An interesting trend emerges in the second distance metric.
During the initial energy levels, the robust optimal solutions exhibit

a larger mean d̂SA across Δτ relative to the nonrobust optimal
solutions (Fig. 14b), particularly when compared to the overall
feasible solution set (Fig. 14a). At the initial energy levels, the mean

d̂SA across Δτ for the robust and nonrobust feasible solutions are
similar. However, as we progress through the energy levels, the ratio
decreases slightly before increasing. If we focus only on the optimal
solutions subset, we find that this distance metric for the robust
solutions is lower at the first and last frames but shows a modest
increase in between. As explained before, this is the behavior we
expect since solutions are typically closer to resonant orbits during
departure from the 3:4 resonant orbit (i.e., the early frames) and
arrival at the 5:6 resonant orbit (i.e., the later frames). The behavior
of the robust optimal solutions observed in this distance metric
suggests strong alignment with this hypothesis.
Compared to nonrobust solutions, robust solutions exhibit larger

deviations from the invariant manifolds at earlier energy levels and
smaller deviations at later energy levels (see Fig. 13). This behavior
reflects the compensatory mechanisms employed by robust solu-
tions to balance feasibility with disruptions in the control authority.
The dependence on Δτ becomes particularly significant at the later
energy levels (e.g., Jacobi Integral >3.000), as the solutions
approach the terminal phases of the transfer. At these later energy
levels, robust solutions generally exhibit increased deviations
from the invariant manifolds as Δτ increases. However, a notable
exception occurs for the case of Δτ � 2.5 TU, which stands out as
an outlier and does not conform to the observed trend. In contrast,
at lower energy levels (e.g., Jacobi Integral <3.000), the relation-
ship reverses: the deviation of robust solutions from the invariant

manifolds decreases as Δτ increases. This suggests that robust
solutions actively minimize deviation from the manifolds at earlier
energy levels to counterbalance the larger deviations that occur at
later stages of the transfer. This adaptive behavior appears to effec-
tively reduce the average deviation across the entire trajectory,
allowing robust solutions to maintain overall feasibility despite
the increasing challenges posed by longer MTEs.

A similar trend is observed for d̂SA (see Fig. 14). At earlier energy
levels, as Δτ increases, robust solutions exhibit a complex behavior:
they move closer to the invariant manifolds and simultaneously
progress farther along the manifold, distancing themselves from
the associated periodic orbit. In contrast, at later energy levels, the
behavior shifts. As Δτ increases, robust solutions may drift further
away from the invariant manifolds. However, they remain closer to
the periodic orbits, indicating a strategic adaptation to the dynamical
environment. By prioritizing proximity to periodic orbits at this
stage, robust solutions mitigate the risks associated with chaotic
dynamics near the end of the transfer.
As indicated in Table 3, the number of feasible robust solutions

decreases with increasingΔτ. Nonetheless, the solutions that remain
feasible achieve this by strategically leveraging the geometry of the
invariant manifolds. The value of Δτ plays a pivotal role in shaping
the feasibility and performance of robust solutions. Larger values of
Δτ necessitate a greater reliance on the geometric structure of
invariant manifolds to maintain feasibility, which may come at the
cost of higher fuel consumption. Across all feasible solutions, a
larger Δτ generally correlates with greater average distances from
the invariant manifolds. However, within the subset of optimal
solutions, robust trajectories continue to “shadow” the invariant
manifolds as closely as, and in some cases even more closely than,

Fig. 14 Fold change in d̂
S
A for robust solutions with varying Δτ relative to nonrobust solutions.

Fig. 13 Fold change in d̂
S
T for robust solutions with varying Δτ relative to nonrobust solutions.
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nonrobust solutions. This demonstrates that longer MTEs do not
necessarily preclude effective utilization of manifold dynamics.
Looking at the distance metrics associated with particular invari-

ant manifolds can also reveal useful insights into the solutions. It can
be intuitively surmised that the optimal LT solutions for this prob-
lem shall flow alongW3∶4

U before eventually transitioning intoW5∶6
S .

To test this hypothesis, we evaluate the orthogonal distance to W3∶4
U

and to W5∶6
S , i.e., �dST�W3∶4

U � and �dST�W5∶6
S �, respectively, and the

corresponding distance along the invariant manifold �dSA�W3∶4
U � and

�dSA�W5∶6
S � for the optimal solutions in each category. As indicated by

the increasing mean �dST�W3∶4
U � across energy levels, it is immedi-

ately obvious that the optimal solutions in all categories depart from
W3∶4

U as they traverse the energy levels (Fig. 15a). Although we do
not observe a converse trend inW5∶6

S , it is important to note that the

solutions remain consistently close to W5∶6
S , allowing them to

leverage W5∶6
S whenever necessary (Fig. 15b).

On the other hand, the trend in �dSA indicates that, on average, the
solutions remain relatively close to the 3:4 resonant orbit as they
traverse the initial energy levels. However, as the energy levels
increase, the solutions begin to drift away from the 3:4 resonant
orbit, reflecting a gradual departure from its influence (Fig. 16a).
Conversely, as the solutions progress through higher energy levels,
there is a noticeable shift in alignment toward the 5:6 resonant orbit.
This suggests that the trajectories increasingly rely on the DS
associated with the 5:6 resonant orbit as they approach the later
stages of the transfer, which, once again, aligns with our expect-
ations (Fig. 16b).
In summary, as shown in Fig. 17, the overall feasible solution set

for the robust case exhibits higher d̂ST and d̂SA values compared to the

Fig. 15 The �dST�W3∶4
U � and �dST�W5∶6

S � for optimal nonrobust solutions and robust solutions with varying Δτ.

Fig. 16 The �dSA�W3∶4
U � and �dSA�W5∶6

S � for optimal nonrobust solutions and robust solutions with varying Δτ.

Fig. 17 The d̂
S
T and d̂

S
A with robust solutions categorized by Δτ.
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nonrobust case. However, if we only consider the optimal solutions,

the mean d̂ST for the robust solutions decreases, becoming more
comparable to that of the nonrobust solutions. The shift in the mean
between the feasible and optimal solutions suggests that, on aver-
age, the robust optimal solutions utilize the invariant manifolds as
effectively as the nonrobust optimal solutions. The covariance
ellipsoids, representing one standard deviation around the mean,

reveal a larger spread in the robust solutions—particularly in the d̂SA
direction—suggesting greater variability in how the robust low-
thrust solutions evolve along the invariant manifolds.

2. Dependence on τ1
In this section, we explore how the relationship of the robust

solutions to the invariant manifolds changes as we vary τ1. We begin
by grouping the solutions based on whether τ1 occurs on the
forward shooting arc (first half of the shooting horizon) or the
backward shooting arc (second half of the shooting horizon) and
performing similar analysis to those discussed in Sec. V.C.1. To
distinguish between these two cases within the robust solution
family, we will refer to the first case as “forward robust solutions”
and the second as “backward robust solutions.”
For both the forward and the backward categories, the robust

feasible solutions exhibit higher d̂ST values compared to the non-
robust feasible solutions, with the backward robust solutions show-
ing smaller distances than the forward robust solutions (Fig. 18a).
However, when examining the optimal solutions, we observe that
the forward robust solutions not only demonstrate a lower mean
distance at the first energy level compared to the nonrobust solutions
but also a lower mean distance than the backward robust solutions
(Fig. 18b). Conversely, as the energy levels increase, the distance
increases for the forward robust solutions and decreases for the
backward robust solutions. If τ1 occurs during the forward shooting
arc, we expect robust solutions to adjust their control parameters to
more effectively leverage the invariant manifolds at the initial
energy levels; conversely, if τ1 occurs during the backward shooting
arc, the robust solutions are likely to make similar adjustments for
the later energy levels. These expectations are consistent with the
trends shown in Fig. 18. For both the forward and the backward
robust solutions, it is important to note the greater reliance on the
invariant manifolds for the robust solutions compared to the non-
robust solutions during the initial and final energy levels, respec-

tively. We know that the absolute d̂ST for both robust and nonrobust
solutions decreases when considering the optimal solution subset—
therefore, the fact that robust solutions shadow the invariant mani-
folds even more closely at certain energy levels highlights the
greater reliance on the invariant manifolds for the robust optimal
solutions dependent on where τ1 occurs.
Note that �dST�W3∶4

U � increases across solution categories as we
move through the energy levels (Fig. 19a). If we focus on the
forward robust solutions, we observe that these solutions have a
slightly smaller �dST�W3∶4

U � compared to the nonrobust solutions

during the first energy level. This is expected, as robust solutions
that experience an MTE early in the trajectory are likely to leverage
W3∶4

U more closely to compensate for the MTE. A similar pattern is
observed for �dST�W5∶6

S � in robust backward solutions. These solu-
tions are expected to align more closely withW5∶6

S , especially in the
later energy levels, to mitigate the effects of an MTE in the latter half
of the trajectory. Interestingly, these solutions maintain close align-
ment with W5∶6

S across all energy levels, which is logical because
compensating for an MTE in the latter half requires the trajectory
to remain close to W5∶6

S throughout, not just in the later stages
(Fig. 19b).
If we examine �dSA�W3∶4

U � and �dSA�W5∶6
S � for the robust solution

categories, we notice some interesting trends in the solutions. We do
not notice any discernible pattern for the robust solutions with
respect to �dSA�W3∶4

U � (Fig. 20a), but we notice that the robust back-
ward solutions demonstrate a smaller �dSA�W5∶6

S � (Fig. 20b) com-
pared to robust forward solutions, as well as the nonrobust solutions.
This makes sense, as these backward arc solutions are expected to
leverage the stable manifold W5∶6

S more closely, especially in the
latter half of the trajectory. Interestingly, the robust forward solu-
tions also maintain relatively small �dSA�W5∶6

S � compared to the
nonrobust solutions, especially toward the initial energy levels,
suggesting that the robust forward solutions rely on W5∶6

S , similar
to the robust backward solutions.
The dependence of robust solutions on τ1 varies significantly

depending on whether the MTE occurs along the forward or back-
ward arc of the trajectory. When τ1 is placed in the forward arc,
robust solutions adjust their control profile early to compensate for
the missed thrust earlier in the trajectory. This early adjustment
typically results in closer alignment with unstable manifolds, such
as W3∶4

U , at the earlier energy levels. Addressing the MTE at this
stage ensures that the trajectory maintains sufficient stability to
progress through the remainder of the transfer. Conversely, when
τ1 occurs in the backward arc, robust solutions modify their control
profiles later in the transfer. These adjustments prioritize alignment
with stable manifolds, such as W5∶6

S , at the later energy levels,
facilitating seamless insertion into the target orbit. As shown in
Fig. 21, interestingly, fuel consumption trends also differ based on
the placement of τ1. Backward robust solutions typically exhibit
lower fuel consumption compared to forward robust solutions,
likely due to their increased reliance on stable manifold geometry
during the final phases. From a cost-efficiency perspective, missed
thrust events in the backward arc may be more favorable for this
specific transfer.
As shown in Fig. 22, the averages d̂ST and d̂SA are lower for the

optimal solution subset compared to the overall feasible solution set
(Fig. 22). In the backward case, the robust optimal solutions behave
more similarly to the nonrobust solutions. Because we expect the
dynamics to be more chaotic during the backward shooting arc, it
becomes necessary for the robust backward solutions to shadow the

Fig. 18 Fold change in d̂
S
T for robust solutions with varying τ1 relative to nonrobust solutions.
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invariant manifolds more closely. Although d̂ST and d̂SA decrease with
the optimal solutions in relation to the feasible solutions, they
remain higher for the robust forward case compared to the nonrobust
solutions. Because the forward shooting segments are farther away
from Europa, it is not as crucial for the robust forward solutions to
leverage the invariant manifolds as strongly as the robust backward
solutions.
The distinction between forward robust and backward robust

solutions lies in the timing of the MTE along the trajectory. Forward
robust solutions are designed with the assumption that the MTE
occurs early in the transfer. These solutions allocate greater control
margin during the initial phases and rely heavily on unstable mani-

folds to ensure stable progress after the MTE. Backward robust
solutions, on the other hand, assume an MTE occurs later in the
trajectory, typically near the terminal phases. These solutions pre-
serve control margin and contingency fuel for the final approach,
leveraging stable manifolds to achieve robust insertion into the
target orbit. In practical mission design, forward robust strategies
may be preferable when uncertainties are concentrated during the
departure phase, while backward robust strategies are critical for
ensuring accuracy and robustness during final orbital insertion or
rendezvous, particularly when late-stage uncertainties are more
pronounced.
The results demonstrate a strong dependence on the Jacobi

energy level, which evolves over time as the spacecraft performs
maneuvers. The Jacobi integral fundamentally determines which
resonant orbits and associated manifolds are accessible to the tra-
jectory, and these structures exhibit distinct geometries and stability
characteristics at different energy levels. At lower energy levels,
trajectories primarily rely on earlier resonances, such as those
associated with W3∶4

U , to facilitate stable departure from the initial
orbit. Here, unstable manifolds play a critical role in guiding the
spacecraft through chaotic regions. As the energy levels increase,
the trajectory transitions to leveraging stable manifolds tied to later
resonances, such as W5∶6

S , to ensure stability and robustness during
final approach and orbital insertion. This dependence on the Jacobi
energy level reflects how the dynamical environment evolves across
the transfer and highlights the adaptive strategies employed by
robust solutions. By aligning with the most advantageous manifolds
at each stage, robust solutions effectively balance stability and
feasibility under varying constraints, including missed thrust events.
In addition to analyzing the relationship between each solution

family and the invariant manifolds, we also compare the solution
sets using two additional metrics that provide deeper insight into the
solution behavior:Fig. 21 Fuel consumption of robust solutions, categorized by τ1.

Fig. 20 The �dSA�W3∶4
U � and �dSA�W5∶6

S � for optimal nonrobust solutions and robust solutions with varying τ1.

Fig. 19 The �dST�W3∶4
U � and �dST�W5∶6

S � for optimal nonrobust solutions and robust solutions with varying τ1.
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1) Distance to Europa: In Fig. 23, we demonstrate the distribu-
tion of the minimum distance to Europa for both the robust and
nonrobust solution sets. If we consider the entire robust optimal
solution set, we observe the minimum distances tend to cluster
around a broader range, whereas the nonrobust solutions show a
narrower spread. The means for both sets look similar, but it is
important to highlight that there exist some robust solutions that
undergo very close approaches. To achieve optimality in the robust
scenario, a balance needs to be struck between effectively leverag-
ing the chaotic dynamics near the secondary while ensuring con-
tingency in thruster operations by avoiding the chaotic regime near
the secondary. We also observe a notable difference in the minimum
distances between the forward and backward robust solutions, with
the forward solutions exhibiting a tighter clustering around a nar-
rower range. This contrast is particularly significant for the back-
ward robust solutions, where MTEs may occur near the spacecraft’s
insertion into the terminal orbit. In these scenarios, it becomes
necessary to either avoid the chaotic dynamics associated with close
approaches to the secondary body or, conversely, to leverage these
dynamics to facilitate a seamless insertion. The majority of back-
ward robust solutions exploit the stable manifold geometry to

mitigate the effects of potential MTEs, effectively using the mani-
fold’s geometry to maintain feasibility, which is consistent with the
stronger alignment we observe between the backward robust sol-
utions and the invariant manifolds, compared to the forward robust
solutions (see Fig. 22). However, there are some backward solutions
that maintain greater distances from Europa, likely as a strategy to
avoid the increased risk of chaos-induced infeasibility. The mini-
mum distance to Europa is primarily determined by the alignment
that best supports the manifold geometry for the given trajectory.
2) Thrust arcs: To further clarify these trends, we investigate the

placement of the thrust arcs across solution families shown in
Fig. 24. For nonrobust solutions, there are critical areas in the
domain that “light up,” suggesting that a majority of the solutions
are placing the thrust arcs at critical transitions between manifolds,
allowing the spacecraft to precisely transition between manifolds. In
contrast, for the robust solutions, the solutions demonstrate a wider
variance evident by the “smoother” heatmap (it is important to note
the difference in magnitude between the nonrobust and the robust
solutions). We observe that the forward robust solutions show
activity near Europa, while the backward robust solutions have
substantially lower activity in that region.

Fig. 22 The d̂
S
T and d̂

S
A with robust solutions categorized by τ1.

Fig. 23 Minimum distance to Europa.
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These metrics provide additional insight into how the robust
solutions compensate for the MTEs, as compared to their nonrobust
counterparts. Overall, our findings confirm that the robust solutions
do indeed rely on carefully chosen thrust-arc placements and sys-
tematically different flybys to mitigate the risks of MTEs. Conse-
quently, the distance metrics, minimum altitudes, and thrust-arc
placements collectively paint an informative picture of the tradeoffs
inherent in designing robust versus nonrobust LT transfers within
chaotic multibody dynamical systems.

D. Extensibility of Framework

The physical interpretation of these results highlights the
differences in how nonrobust and robust solutions handle the pos-
sibility of MTEs. Nonrobust solutions assume uninterrupted thrust
availability, which allows them to optimize for continuous LT
maneuvers. However, this assumption leaves them highly vulner-
able to deviations if an unexpected MTE occurs, as they lack
contingency measures to recover. In contrast, robust solutions are
explicitly designed to account for the possibility of a thrust outage,
whether it occurs in the forward or backward arc. By incorporating
this contingency, robust solutions adjust their trajectories to remain
near the relevant invariant manifolds during critical periods, pre-
serving both stability and feasibility despite the missed thrust event.
From a physical standpoint, robust solutions sacrifice some nominal
efficiency to leverage the stabilizing influence of manifold struc-
tures, enabling them to maintain robustness under challenging con-
ditions. Our analysis demonstrates that invariant manifolds play a

critical role in LT trajectory design, which becomes more prominent
when the solutions are made robust to missed thrust events. While
our work focuses on a specific transfer, we highlight three ways in
which these insights can be informative in other contexts:
1) Analyzing relationships to invariant structures in multi-

body dynamical systems: Our framework can apply to more gen-
eral celestial mechanics problems, as long as these problems possess
similar DS. The core concept involves defining a distance metric to
quantitatively study the relationship between (robust) LT solutions
and invariant structures. While, in this paper, we study a planar
circular restricted three-body problem, partially due to the ease in
visualization this approximation permits, these techniques can be
extended to not just other three-body problems but more generally
to other multibody dynamical systems. In more complex problems,
the LT solutions and the invariant structures may exhibit an increase
in dimensionality, and therefore, the challenge in applying these
methods will rely on the development of dynamical systems tools to
efficiently generate these invariant structures. However, once we
have these invariant structures, whether through data-driven
approaches or other parameterization methods, the distance metrics
can be readily extended to study the relationship between the LT
solutions and the invariant manifolds, making the findings relevant
to various mission design scenarios, including cislunar and inter-
planetary.
2) Improving (robust) LT trajectory design through manifold

geometry: The strong correlation between the LT (robust) trajectory
solutions and the invariant manifolds, as evident in this study,
indicates the presence of valuable geometric constraints that can

Fig. 24 Placement of thrust arcs.
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significantly streamline the robust trajectory design process. For exam-
ple, the astrodynamics software developed by Beeson et al. [30],
which has been successfully applied to various cislunar problems—
including the Power & Propulsion Element—demonstrates the value
in embedding DS into the optimization process to streamline the
automatic global search for solutions in complex environments.
Furthermore, recognizing that (robust) solutions tend to align more
closely with invariant manifolds can not only facilitate better initial
guess generation for the control parameters but also improve the
global search process since incorporating geometric knowledge
into the robust trajectory design problem, either as a part of the
objective function or as constraints, can help narrow the solution
space.
3) Understanding robustness through distance metrics: We

introduce distance metrics as proxies for evaluating robustness,
correlating the extent to which solutions rely on invariant manifolds
with their overall robustness. By investigating how varying the
uncertainty parameters (e.g., where the MTE begins and how long
they last) affect a trajectory’s proximity to invariant structures,
mission designers can proactively diagnose and thus mitigate poten-
tial performance degradations. This framework, therefore, can pro-
vide practitioners with a quantitative basis for providing statistical
guarantees across diverse uncertainty realizations and actionable
guidance for trajectory design.
While our current analysis focuses on planar, autonomous sys-

tems, the foundational concepts are general, extending to spatial
and/or nonautonomous systems. In principle, a distance metric
simply requires a representation—analytical or data-driven—of
the underlying invariant sets in the dynamical system. As soon as
a suitable approximation of these sets is available, the same distance
metrics can be used to quantify how closely a given trajectory
follows or diverges from the invariant structure. The main challenge
in moving to three-dimensional scenarios is not the metric itself
but rather the generation and representation of invariant objects
in higher-dimensional spaces. Visualizing these manifolds also
becomes difficult, as standard two-dimensional plots cannot fully
capture the geometry, but advancements in visualization techniques
have made progress in this area in recent years (e.g., [55–57]).
Despite recent advancements, these methods still require numeri-
cally approximating the invariant structures. Numerical techniques
for the automated approximation of center and invariant manifolds
based on perturbation theory have been developed and applied to
celestial mechanics in recent decades (e.g., [58–61]). A similar
automated computer algebra approach to generating invariant mani-
folds has also been developed through the theory of Cabre et al.
[62–64], named the parameterization method for invariant

manifolds, and summarized in the book by Haro et al. [65]. Our
methods can be further extended to address more complex dynami-
cal models by generating approximations to dynamical structures
as sets of data using the aforementioned techniques, wherein the
benefits of a distance-based approach remain. Even if visual
representations are less intuitive in higher dimensions, the metric
itself continues to measure proximity between two sets—namely,
an observed trajectory (or family of trajectories) and an invariant
manifold. Thus, one can verify how close a given solution remains
to an invariant structure without relying solely on graphical inspec-
tion. It is also possible to analyze nonautonomous systems through
this framework by transforming them into autonomous systems
through the extension of the phase space. This is achieved by
converting a d-dimensional nonautonomous system into a
�d� 1�-dimensional autonomous system, where time is intro-
duced as an additional state variable. In this extended phase space,
traditional Poincaré sections can be defined by fixing time or
event-based sections that trigger when specific state-space con-
ditions are met. However, the distance metrics would now become
time-dependent to account for invariant structure evolution over
time. Beyond this modification, the techniques and distance met-
rics proposed in this study can be applied directly, enabling the
analysis of these time-evolving manifolds while preserving the
versatility of the framework.

VI. Conclusions

The missed thrust design problem was formulated within a gen-
eral robust optimal control framework that accounts for various
forms of uncertainty. From this mathematical definition, a specific
missed thrust design problem was defined, presenting it as a special
case of the general robust optimal control problem. The study
employed qualitative and quantitative tools to analyze the relation-
ship between robust and nonrobust solutions and the underlying
invariant manifolds. Using two distance metrics on a Poincaré
section, the analysis revealed distinct differences in the behavior
of feasible and optimal solutions for robust and nonrobust cases.
The results reveal that robust optimal solutions closely align with

the relevant invariant manifolds, often matching or exceeding the
alignment seen with nonrobust optimal solutions. This behavior
underscores the critical role of invariant manifolds in facilitating
robust trajectory design, particularly in maintaining optimality
under missed thrust events. If the thruster outage occurs during
the initial stages of the transfer, robust solutions exhibit closer
alignment with the unstable invariant manifolds associated with
the pertinent resonant orbits. Conversely, if the outage takes place
during the later stages, robust solutions align more closely with the
stable invariant manifolds of the pertinent resonant orbits. By
leveraging these dynamical structures, robust solutions effectively
mitigate the risks associated with thrust outages while maintaining
trajectories that remain dynamically favorable. Having knowledge
of the change in relation of a nonrobust to a robust trajectory with
respect to the pertinent dynamical structures should enable more
efficient solution methods to robust trajectory problems and, in
particular, better enable the solution of these problems within a
global optimization framework.
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